Metamath Proof Explorer


Theorem sb8eu

Description: Variable substitution in unique existential quantifier. Usage of this theorem is discouraged because it depends on ax-13 . For a version requiring more disjoint variables, but fewer axioms, see sb8euv . (Contributed by NM, 7-Aug-1994) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 24-Aug-2019) (New usage is discouraged.)

Ref Expression
Hypothesis sb8eu.1 y φ
Assertion sb8eu ∃! x φ ∃! y y x φ

Proof

Step Hyp Ref Expression
1 sb8eu.1 y φ
2 1 nfsb y w x φ
3 2 sb8eulem ∃! x φ ∃! y y x φ