Metamath Proof Explorer


Theorem sb8iota

Description: Variable substitution in description binder. Compare sb8eu . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 18-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypothesis sb8iota.1 y φ
Assertion sb8iota ι x | φ = ι y | y x φ

Proof

Step Hyp Ref Expression
1 sb8iota.1 y φ
2 nfv w φ x = z
3 2 sb8 x φ x = z w w x φ x = z
4 sbbi w x φ x = z w x φ w x x = z
5 1 nfsb y w x φ
6 equsb3 w x x = z w = z
7 nfv y w = z
8 6 7 nfxfr y w x x = z
9 5 8 nfbi y w x φ w x x = z
10 4 9 nfxfr y w x φ x = z
11 nfv w y x φ x = z
12 sbequ w = y w x φ x = z y x φ x = z
13 10 11 12 cbvalv1 w w x φ x = z y y x φ x = z
14 equsb3 y x x = z y = z
15 14 sblbis y x φ x = z y x φ y = z
16 15 albii y y x φ x = z y y x φ y = z
17 3 13 16 3bitri x φ x = z y y x φ y = z
18 17 abbii z | x φ x = z = z | y y x φ y = z
19 18 unieqi z | x φ x = z = z | y y x φ y = z
20 dfiota2 ι x | φ = z | x φ x = z
21 dfiota2 ι y | y x φ = z | y y x φ y = z
22 19 20 21 3eqtr4i ι x | φ = ι y | y x φ