Metamath Proof Explorer


Theorem sbabelOLD

Description: Obsolete version of sbabel as of 28-Oct-2024. (Contributed by NM, 27-Sep-2003) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 26-Dec-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis sbabel.1 _ x A
Assertion sbabelOLD y x z | φ A z | y x φ A

Proof

Step Hyp Ref Expression
1 sbabel.1 _ x A
2 sbex y x v v A z z v φ v y x v A z z v φ
3 sban y x v A z z v φ y x v A y x z z v φ
4 1 nfcri x v A
5 4 sbf y x v A v A
6 nfv x z v
7 6 sbf y x z v z v
8 7 sbrbis y x z v φ z v y x φ
9 8 sbalv y x z z v φ z z v y x φ
10 5 9 anbi12i y x v A y x z z v φ v A z z v y x φ
11 3 10 bitri y x v A z z v φ v A z z v y x φ
12 11 exbii v y x v A z z v φ v v A z z v y x φ
13 2 12 bitri y x v v A z z v φ v v A z z v y x φ
14 clabel z | φ A v v A z z v φ
15 14 sbbii y x z | φ A y x v v A z z v φ
16 clabel z | y x φ A v v A z z v y x φ
17 13 15 16 3bitr4i y x z | φ A z | y x φ A