Metamath Proof Explorer


Theorem sbalv

Description: Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypothesis sbalv.1 y x φ ψ
Assertion sbalv y x z φ z ψ

Proof

Step Hyp Ref Expression
1 sbalv.1 y x φ ψ
2 sbal y x z φ z y x φ
3 1 albii z y x φ z ψ
4 2 3 bitri y x z φ z ψ