Metamath Proof Explorer


Theorem sbaniota

Description: Theorem *14.26 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 12-Jul-2011)

Ref Expression
Assertion sbaniota ∃! x φ x φ ψ [˙ ι x | φ / x]˙ ψ

Proof

Step Hyp Ref Expression
1 eupickbi ∃! x φ x φ ψ x φ ψ
2 sbiota1 ∃! x φ x φ ψ [˙ ι x | φ / x]˙ ψ
3 1 2 bitrd ∃! x φ x φ ψ [˙ ι x | φ / x]˙ ψ