Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Principia Mathematica * 13 and * 14
sbaniota
Next ⟩
eubiOLD
Metamath Proof Explorer
Ascii
Unicode
Theorem
sbaniota
Description:
Theorem *14.26 in
WhiteheadRussell
p. 192.
(Contributed by
Andrew Salmon
, 12-Jul-2011)
Ref
Expression
Assertion
sbaniota
⊢
∃!
x
φ
→
∃
x
φ
∧
ψ
↔
[
˙
ι
x
|
φ
/
x
]
˙
ψ
Proof
Step
Hyp
Ref
Expression
1
eupickbi
⊢
∃!
x
φ
→
∃
x
φ
∧
ψ
↔
∀
x
φ
→
ψ
2
sbiota1
⊢
∃!
x
φ
→
∀
x
φ
→
ψ
↔
[
˙
ι
x
|
φ
/
x
]
˙
ψ
3
1
2
bitrd
⊢
∃!
x
φ
→
∃
x
φ
∧
ψ
↔
[
˙
ι
x
|
φ
/
x
]
˙
ψ