Metamath Proof Explorer


Theorem sbbid

Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993) Remove dependency on ax-10 and ax-13 . (Revised by Wolf Lammen, 24-Nov-2022) Revise df-sb . (Revised by Steven Nguyen, 11-Jul-2023)

Ref Expression
Hypotheses sbbid.1 xφ
sbbid.2 φψχ
Assertion sbbid φyxψyxχ

Proof

Step Hyp Ref Expression
1 sbbid.1 xφ
2 sbbid.2 φψχ
3 1 2 alrimi φxψχ
4 spsbbi xψχyxψyxχ
5 3 4 syl φyxψyxχ