Metamath Proof Explorer


Theorem sbc19.21g

Description: Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004)

Ref Expression
Hypothesis sbcgf.1 x φ
Assertion sbc19.21g A V [˙A / x]˙ φ ψ φ [˙A / x]˙ ψ

Proof

Step Hyp Ref Expression
1 sbcgf.1 x φ
2 sbcimg A V [˙A / x]˙ φ ψ [˙A / x]˙ φ [˙A / x]˙ ψ
3 1 sbcgf A V [˙A / x]˙ φ φ
4 3 imbi1d A V [˙A / x]˙ φ [˙A / x]˙ ψ φ [˙A / x]˙ ψ
5 2 4 bitrd A V [˙A / x]˙ φ ψ φ [˙A / x]˙ ψ