Metamath Proof Explorer


Theorem sbc2ie

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008) (Revised by Mario Carneiro, 19-Dec-2013) (Proof shortened by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypotheses sbc2ie.1 A V
sbc2ie.2 B V
sbc2ie.3 x = A y = B φ ψ
Assertion sbc2ie [˙A / x]˙ [˙B / y]˙ φ ψ

Proof

Step Hyp Ref Expression
1 sbc2ie.1 A V
2 sbc2ie.2 B V
3 sbc2ie.3 x = A y = B φ ψ
4 2 a1i x = A B V
5 4 3 sbcied x = A [˙B / y]˙ φ ψ
6 1 5 sbcie [˙A / x]˙ [˙B / y]˙ φ ψ