Metamath Proof Explorer


Theorem sbc2ieOLD

Description: Obsolete version of sbc2ie as of 12-Oct-2024. (Contributed by NM, 16-Dec-2008) (Revised by Mario Carneiro, 19-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses sbc2ieOLD.1 A V
sbc2ieOLD.2 B V
sbc2ieOLD.3 x = A y = B φ ψ
Assertion sbc2ieOLD [˙A / x]˙ [˙B / y]˙ φ ψ

Proof

Step Hyp Ref Expression
1 sbc2ieOLD.1 A V
2 sbc2ieOLD.2 B V
3 sbc2ieOLD.3 x = A y = B φ ψ
4 nfv x ψ
5 nfv y ψ
6 2 nfth x B V
7 4 5 6 3 sbc2iegf A V B V [˙A / x]˙ [˙B / y]˙ φ ψ
8 1 2 7 mp2an [˙A / x]˙ [˙B / y]˙ φ ψ