Metamath Proof Explorer


Theorem sbc2iedv

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008) (Proof shortened by Mario Carneiro, 18-Oct-2016)

Ref Expression
Hypotheses sbc2iedv.1 A V
sbc2iedv.2 B V
sbc2iedv.3 φ x = A y = B ψ χ
Assertion sbc2iedv φ [˙A / x]˙ [˙B / y]˙ ψ χ

Proof

Step Hyp Ref Expression
1 sbc2iedv.1 A V
2 sbc2iedv.2 B V
3 sbc2iedv.3 φ x = A y = B ψ χ
4 1 a1i φ A V
5 2 a1i φ x = A B V
6 3 impl φ x = A y = B ψ χ
7 5 6 sbcied φ x = A [˙B / y]˙ ψ χ
8 4 7 sbcied φ [˙A / x]˙ [˙B / y]˙ ψ χ