Metamath Proof Explorer


Theorem sbc2iedv

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008) (Proof shortened by Mario Carneiro, 18-Oct-2016)

Ref Expression
Hypotheses sbc2iedv.1 AV
sbc2iedv.2 BV
sbc2iedv.3 φx=Ay=Bψχ
Assertion sbc2iedv φ[˙A/x]˙[˙B/y]˙ψχ

Proof

Step Hyp Ref Expression
1 sbc2iedv.1 AV
2 sbc2iedv.2 BV
3 sbc2iedv.3 φx=Ay=Bψχ
4 1 a1i φAV
5 2 a1i φx=ABV
6 3 impl φx=Ay=Bψχ
7 5 6 sbcied φx=A[˙B/y]˙ψχ
8 4 7 sbcied φ[˙A/x]˙[˙B/y]˙ψχ