Metamath Proof Explorer


Theorem sbc3ie

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014) (Revised by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses sbc3ie.1 A V
sbc3ie.2 B V
sbc3ie.3 C V
sbc3ie.4 x = A y = B z = C φ ψ
Assertion sbc3ie [˙A / x]˙ [˙B / y]˙ [˙C / z]˙ φ ψ

Proof

Step Hyp Ref Expression
1 sbc3ie.1 A V
2 sbc3ie.2 B V
3 sbc3ie.3 C V
4 sbc3ie.4 x = A y = B z = C φ ψ
5 3 a1i x = A y = B C V
6 4 3expa x = A y = B z = C φ ψ
7 5 6 sbcied x = A y = B [˙C / z]˙ φ ψ
8 1 2 7 sbc2ie [˙A / x]˙ [˙B / y]˙ [˙C / z]˙ φ ψ