Metamath Proof Explorer


Theorem sbc3or

Description: sbcor with a 3-disjuncts. This proof is sbc3orgVD automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011) (Revised by NM, 24-Aug-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sbc3or [˙A / x]˙ φ ψ χ [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ

Proof

Step Hyp Ref Expression
1 sbcor [˙A / x]˙ φ ψ χ [˙A / x]˙ φ ψ [˙A / x]˙ χ
2 df-3or φ ψ χ φ ψ χ
3 2 bicomi φ ψ χ φ ψ χ
4 3 sbcbii [˙A / x]˙ φ ψ χ [˙A / x]˙ φ ψ χ
5 sbcor [˙A / x]˙ φ ψ [˙A / x]˙ φ [˙A / x]˙ ψ
6 5 orbi1i [˙A / x]˙ φ ψ [˙A / x]˙ χ [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ
7 1 4 6 3bitr3i [˙A / x]˙ φ ψ χ [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ
8 df-3or [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ
9 7 8 bitr4i [˙A / x]˙ φ ψ χ [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ