Metamath Proof Explorer


Theorem sbc6

Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993) (Proof shortened by Eric Schmidt, 17-Jan-2007)

Ref Expression
Hypothesis sbc6.1 A V
Assertion sbc6 [˙A / x]˙ φ x x = A φ

Proof

Step Hyp Ref Expression
1 sbc6.1 A V
2 sbc6g A V [˙A / x]˙ φ x x = A φ
3 1 2 ax-mp [˙A / x]˙ φ x x = A φ