Metamath Proof Explorer


Theorem sbc8g

Description: This is the closest we can get to df-sbc if we start from dfsbcq (see its comments) and dfsbcq2 . (Contributed by NM, 18-Nov-2008) (Proof shortened by Andrew Salmon, 29-Jun-2011) (Proof modification is discouraged.)

Ref Expression
Assertion sbc8g A V [˙A / x]˙ φ A x | φ

Proof

Step Hyp Ref Expression
1 dfsbcq y = A [˙y / x]˙ φ [˙A / x]˙ φ
2 eleq1 y = A y x | φ A x | φ
3 df-clab y x | φ y x φ
4 equid y = y
5 dfsbcq2 y = y y x φ [˙y / x]˙ φ
6 4 5 ax-mp y x φ [˙y / x]˙ φ
7 3 6 bitr2i [˙y / x]˙ φ y x | φ
8 1 2 7 vtoclbg A V [˙A / x]˙ φ A x | φ