Metamath Proof Explorer


Theorem sbcal

Description: Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbcal [˙A / y]˙ x φ x [˙A / y]˙ φ

Proof

Step Hyp Ref Expression
1 sbcex [˙A / y]˙ x φ A V
2 sbcex [˙A / y]˙ φ A V
3 2 sps x [˙A / y]˙ φ A V
4 dfsbcq2 z = A z y x φ [˙A / y]˙ x φ
5 dfsbcq2 z = A z y φ [˙A / y]˙ φ
6 5 albidv z = A x z y φ x [˙A / y]˙ φ
7 sbal z y x φ x z y φ
8 4 6 7 vtoclbg A V [˙A / y]˙ x φ x [˙A / y]˙ φ
9 1 3 8 pm5.21nii [˙A / y]˙ x φ x [˙A / y]˙ φ