Metamath Proof Explorer


Theorem sbcbi1

Description: Distribution of class substitution over biconditional. One direction of sbcbig that holds for proper classes. (Contributed by NM, 17-Aug-2018)

Ref Expression
Assertion sbcbi1 [˙A / x]˙ φ ψ [˙A / x]˙ φ [˙A / x]˙ ψ

Proof

Step Hyp Ref Expression
1 sbcex [˙A / x]˙ φ ψ A V
2 sbcbig A V [˙A / x]˙ φ ψ [˙A / x]˙ φ [˙A / x]˙ ψ
3 2 biimpd A V [˙A / x]˙ φ ψ [˙A / x]˙ φ [˙A / x]˙ ψ
4 1 3 mpcom [˙A / x]˙ φ ψ [˙A / x]˙ φ [˙A / x]˙ ψ