Metamath Proof Explorer


Theorem sbcbi2

Description: Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018) (Proof shortened by Wolf Lammen, 4-May-2023) Avoid ax-10, ax-12. (Revised by Steven Nguyen, 5-May-2024)

Ref Expression
Assertion sbcbi2 xφψ[˙A/x]˙φ[˙A/x]˙ψ

Proof

Step Hyp Ref Expression
1 abbi xφψx|φ=x|ψ
2 eleq2 x|φ=x|ψAx|φAx|ψ
3 1 2 syl xφψAx|φAx|ψ
4 df-sbc [˙A/x]˙φAx|φ
5 df-sbc [˙A/x]˙ψAx|ψ
6 3 4 5 3bitr4g xφψ[˙A/x]˙φ[˙A/x]˙ψ