Metamath Proof Explorer


Theorem sbcbi2

Description: Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018) (Proof shortened by Wolf Lammen, 4-May-2023) Avoid ax-10, ax-12. (Revised by Steven Nguyen, 5-May-2024)

Ref Expression
Assertion sbcbi2 x φ ψ [˙A / x]˙ φ [˙A / x]˙ ψ

Proof

Step Hyp Ref Expression
1 abbi1 x φ ψ x | φ = x | ψ
2 eleq2 x | φ = x | ψ A x | φ A x | ψ
3 1 2 syl x φ ψ A x | φ A x | ψ
4 df-sbc [˙A / x]˙ φ A x | φ
5 df-sbc [˙A / x]˙ ψ A x | ψ
6 3 4 5 3bitr4g x φ ψ [˙A / x]˙ φ [˙A / x]˙ ψ