Metamath Proof Explorer


Theorem sbcbid

Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014)

Ref Expression
Hypotheses sbcbid.1 x φ
sbcbid.2 φ ψ χ
Assertion sbcbid φ [˙A / x]˙ ψ [˙A / x]˙ χ

Proof

Step Hyp Ref Expression
1 sbcbid.1 x φ
2 sbcbid.2 φ ψ χ
3 1 2 abbid φ x | ψ = x | χ
4 3 eleq2d φ A x | ψ A x | χ
5 df-sbc [˙A / x]˙ ψ A x | ψ
6 df-sbc [˙A / x]˙ χ A x | χ
7 4 5 6 3bitr4g φ [˙A / x]˙ ψ [˙A / x]˙ χ