Metamath Proof Explorer


Theorem sbcbidv

Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014) Drop ax-12 . (Revised by Gino Giotto, 1-Dec-2023)

Ref Expression
Hypothesis sbcbidv.1 φ ψ χ
Assertion sbcbidv φ [˙A / x]˙ ψ [˙A / x]˙ χ

Proof

Step Hyp Ref Expression
1 sbcbidv.1 φ ψ χ
2 eqidd φ A = A
3 2 1 sbceqbid φ [˙A / x]˙ ψ [˙A / x]˙ χ