Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
sbcbii
Next ⟩
sbcbi1
Metamath Proof Explorer
Ascii
Unicode
Theorem
sbcbii
Description:
Formula-building inference for class substitution.
(Contributed by
NM
, 11-Nov-2005)
Ref
Expression
Hypothesis
sbcbii.1
⊢
φ
↔
ψ
Assertion
sbcbii
⊢
[
˙
A
/
x
]
˙
φ
↔
[
˙
A
/
x
]
˙
ψ
Proof
Step
Hyp
Ref
Expression
1
sbcbii.1
⊢
φ
↔
ψ
2
1
a1i
⊢
⊤
→
φ
↔
ψ
3
2
sbcbidv
⊢
⊤
→
[
˙
A
/
x
]
˙
φ
↔
[
˙
A
/
x
]
˙
ψ
4
3
mptru
⊢
[
˙
A
/
x
]
˙
φ
↔
[
˙
A
/
x
]
˙
ψ