Metamath Proof Explorer


Theorem sbcbii

Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005)

Ref Expression
Hypothesis sbcbii.1 φ ψ
Assertion sbcbii [˙A / x]˙ φ [˙A / x]˙ ψ

Proof

Step Hyp Ref Expression
1 sbcbii.1 φ ψ
2 1 a1i φ ψ
3 2 sbcbidv [˙A / x]˙ φ [˙A / x]˙ ψ
4 3 mptru [˙A / x]˙ φ [˙A / x]˙ ψ