Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Binary relations
sbcbr
Next ⟩
sbcbr12g
Metamath Proof Explorer
Ascii
Unicode
Theorem
sbcbr
Description:
Move substitution in and out of a binary relation.
(Contributed by
NM
, 23-Aug-2018)
Ref
Expression
Assertion
sbcbr
⊢
[
˙
A
/
x
]
˙
B
R
C
↔
B
⦋
A
/
x
⦌
R
C
Proof
Step
Hyp
Ref
Expression
1
sbcbr123
⊢
[
˙
A
/
x
]
˙
B
R
C
↔
⦋
A
/
x
⦌
B
⦋
A
/
x
⦌
R
⦋
A
/
x
⦌
C
2
csbconstg
⊢
A
∈
V
→
⦋
A
/
x
⦌
B
=
B
3
csbconstg
⊢
A
∈
V
→
⦋
A
/
x
⦌
C
=
C
4
2
3
breq12d
⊢
A
∈
V
→
⦋
A
/
x
⦌
B
⦋
A
/
x
⦌
R
⦋
A
/
x
⦌
C
↔
B
⦋
A
/
x
⦌
R
C
5
br0
⊢
¬
⦋
A
/
x
⦌
B
∅
⦋
A
/
x
⦌
C
6
csbprc
⊢
¬
A
∈
V
→
⦋
A
/
x
⦌
R
=
∅
7
6
breqd
⊢
¬
A
∈
V
→
⦋
A
/
x
⦌
B
⦋
A
/
x
⦌
R
⦋
A
/
x
⦌
C
↔
⦋
A
/
x
⦌
B
∅
⦋
A
/
x
⦌
C
8
5
7
mtbiri
⊢
¬
A
∈
V
→
¬
⦋
A
/
x
⦌
B
⦋
A
/
x
⦌
R
⦋
A
/
x
⦌
C
9
br0
⊢
¬
B
∅
C
10
6
breqd
⊢
¬
A
∈
V
→
B
⦋
A
/
x
⦌
R
C
↔
B
∅
C
11
9
10
mtbiri
⊢
¬
A
∈
V
→
¬
B
⦋
A
/
x
⦌
R
C
12
8
11
2falsed
⊢
¬
A
∈
V
→
⦋
A
/
x
⦌
B
⦋
A
/
x
⦌
R
⦋
A
/
x
⦌
C
↔
B
⦋
A
/
x
⦌
R
C
13
4
12
pm2.61i
⊢
⦋
A
/
x
⦌
B
⦋
A
/
x
⦌
R
⦋
A
/
x
⦌
C
↔
B
⦋
A
/
x
⦌
R
C
14
1
13
bitri
⊢
[
˙
A
/
x
]
˙
B
R
C
↔
B
⦋
A
/
x
⦌
R
C