Metamath Proof Explorer


Theorem sbcbr

Description: Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018)

Ref Expression
Assertion sbcbr [˙A / x]˙ B R C B A / x R C

Proof

Step Hyp Ref Expression
1 sbcbr123 [˙A / x]˙ B R C A / x B A / x R A / x C
2 csbconstg A V A / x B = B
3 csbconstg A V A / x C = C
4 2 3 breq12d A V A / x B A / x R A / x C B A / x R C
5 br0 ¬ A / x B A / x C
6 csbprc ¬ A V A / x R =
7 6 breqd ¬ A V A / x B A / x R A / x C A / x B A / x C
8 5 7 mtbiri ¬ A V ¬ A / x B A / x R A / x C
9 br0 ¬ B C
10 6 breqd ¬ A V B A / x R C B C
11 9 10 mtbiri ¬ A V ¬ B A / x R C
12 8 11 2falsed ¬ A V A / x B A / x R A / x C B A / x R C
13 4 12 pm2.61i A / x B A / x R A / x C B A / x R C
14 1 13 bitri [˙A / x]˙ B R C B A / x R C