Metamath Proof Explorer


Theorem sbcbr123

Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005) (Revised by NM, 22-Aug-2018)

Ref Expression
Assertion sbcbr123 [˙A / x]˙ B R C A / x B A / x R A / x C

Proof

Step Hyp Ref Expression
1 sbcex [˙A / x]˙ B R C A V
2 br0 ¬ A / x B A / x C
3 csbprc ¬ A V A / x R =
4 3 breqd ¬ A V A / x B A / x R A / x C A / x B A / x C
5 2 4 mtbiri ¬ A V ¬ A / x B A / x R A / x C
6 5 con4i A / x B A / x R A / x C A V
7 dfsbcq2 y = A y x B R C [˙A / x]˙ B R C
8 csbeq1 y = A y / x B = A / x B
9 csbeq1 y = A y / x R = A / x R
10 csbeq1 y = A y / x C = A / x C
11 8 9 10 breq123d y = A y / x B y / x R y / x C A / x B A / x R A / x C
12 nfcsb1v _ x y / x B
13 nfcsb1v _ x y / x R
14 nfcsb1v _ x y / x C
15 12 13 14 nfbr x y / x B y / x R y / x C
16 csbeq1a x = y B = y / x B
17 csbeq1a x = y R = y / x R
18 csbeq1a x = y C = y / x C
19 16 17 18 breq123d x = y B R C y / x B y / x R y / x C
20 15 19 sbiev y x B R C y / x B y / x R y / x C
21 7 11 20 vtoclbg A V [˙A / x]˙ B R C A / x B A / x R A / x C
22 1 6 21 pm5.21nii [˙A / x]˙ B R C A / x B A / x R A / x C