Metamath Proof Explorer


Theorem sbcbr12g

Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005)

Ref Expression
Assertion sbcbr12g A V [˙A / x]˙ B R C A / x B R A / x C

Proof

Step Hyp Ref Expression
1 sbcbr123 [˙A / x]˙ B R C A / x B A / x R A / x C
2 csbconstg A V A / x R = R
3 2 breqd A V A / x B A / x R A / x C A / x B R A / x C
4 1 3 syl5bb A V [˙A / x]˙ B R C A / x B R A / x C