Metamath Proof Explorer


Theorem sbcbr1g

Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005)

Ref Expression
Assertion sbcbr1g A V [˙A / x]˙ B R C A / x B R C

Proof

Step Hyp Ref Expression
1 sbcbr12g A V [˙A / x]˙ B R C A / x B R A / x C
2 csbconstg A V A / x C = C
3 2 breq2d A V A / x B R A / x C A / x B R C
4 1 3 bitrd A V [˙A / x]˙ B R C A / x B R C