Metamath Proof Explorer


Theorem sbcbr2g

Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005)

Ref Expression
Assertion sbcbr2g A V [˙A / x]˙ B R C B R A / x C

Proof

Step Hyp Ref Expression
1 sbcbr12g A V [˙A / x]˙ B R C A / x B R A / x C
2 csbconstg A V A / x B = B
3 2 breq1d A V A / x B R A / x C B R A / x C
4 1 3 bitrd A V [˙A / x]˙ B R C B R A / x C