Metamath Proof Explorer


Theorem sbcco

Description: A composition law for class substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sbccow when possible. (Contributed by NM, 26-Sep-2003) (Revised by Mario Carneiro, 13-Oct-2016) (New usage is discouraged.)

Ref Expression
Assertion sbcco [˙A / y]˙ [˙y / x]˙ φ [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 sbcex [˙A / y]˙ [˙y / x]˙ φ A V
2 sbcex [˙A / x]˙ φ A V
3 dfsbcq z = A [˙z / y]˙ [˙y / x]˙ φ [˙A / y]˙ [˙y / x]˙ φ
4 dfsbcq z = A [˙z / x]˙ φ [˙A / x]˙ φ
5 sbsbc y x φ [˙y / x]˙ φ
6 5 sbbii z y y x φ z y [˙y / x]˙ φ
7 nfv y φ
8 7 sbco2 z y y x φ z x φ
9 sbsbc z y [˙y / x]˙ φ [˙z / y]˙ [˙y / x]˙ φ
10 6 8 9 3bitr3ri [˙z / y]˙ [˙y / x]˙ φ z x φ
11 sbsbc z x φ [˙z / x]˙ φ
12 10 11 bitri [˙z / y]˙ [˙y / x]˙ φ [˙z / x]˙ φ
13 3 4 12 vtoclbg A V [˙A / y]˙ [˙y / x]˙ φ [˙A / x]˙ φ
14 1 2 13 pm5.21nii [˙A / y]˙ [˙y / x]˙ φ [˙A / x]˙ φ