Metamath Proof Explorer


Theorem sbcco2

Description: A composition law for class substitution. Importantly, x may occur free in the class expression substituted for A . (Contributed by NM, 5-Sep-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011)

Ref Expression
Hypothesis sbcco2.1 x = y A = B
Assertion sbcco2 [˙x / y]˙ [˙B / x]˙ φ [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 sbcco2.1 x = y A = B
2 sbsbc x y [˙B / x]˙ φ [˙x / y]˙ [˙B / x]˙ φ
3 1 equcoms y = x A = B
4 dfsbcq A = B [˙A / x]˙ φ [˙B / x]˙ φ
5 4 bicomd A = B [˙B / x]˙ φ [˙A / x]˙ φ
6 3 5 syl y = x [˙B / x]˙ φ [˙A / x]˙ φ
7 6 sbievw x y [˙B / x]˙ φ [˙A / x]˙ φ
8 2 7 bitr3i [˙x / y]˙ [˙B / x]˙ φ [˙A / x]˙ φ