Metamath Proof Explorer


Theorem sbcco3g

Description: Composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker sbcco3gw when possible. (Contributed by NM, 27-Nov-2005) (Revised by Mario Carneiro, 11-Nov-2016) (New usage is discouraged.)

Ref Expression
Hypothesis sbcco3g.1 x = A B = C
Assertion sbcco3g A V [˙A / x]˙ [˙B / y]˙ φ [˙C / y]˙ φ

Proof

Step Hyp Ref Expression
1 sbcco3g.1 x = A B = C
2 sbcnestg A V [˙A / x]˙ [˙B / y]˙ φ [˙ A / x B / y]˙ φ
3 elex A V A V
4 nfcvd A V _ x C
5 4 1 csbiegf A V A / x B = C
6 dfsbcq A / x B = C [˙ A / x B / y]˙ φ [˙C / y]˙ φ
7 3 5 6 3syl A V [˙ A / x B / y]˙ φ [˙C / y]˙ φ
8 2 7 bitrd A V [˙A / x]˙ [˙B / y]˙ φ [˙C / y]˙ φ