Metamath Proof Explorer


Theorem sbccomlem

Description: Lemma for sbccom . (Contributed by NM, 14-Nov-2005) (Revised by Mario Carneiro, 18-Oct-2016)

Ref Expression
Assertion sbccomlem [˙A / x]˙ [˙B / y]˙ φ [˙B / y]˙ [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 excom x y x = A y = B φ y x x = A y = B φ
2 exdistr x y x = A y = B φ x x = A y y = B φ
3 an12 x = A y = B φ y = B x = A φ
4 3 exbii x x = A y = B φ x y = B x = A φ
5 19.42v x y = B x = A φ y = B x x = A φ
6 4 5 bitri x x = A y = B φ y = B x x = A φ
7 6 exbii y x x = A y = B φ y y = B x x = A φ
8 1 2 7 3bitr3i x x = A y y = B φ y y = B x x = A φ
9 sbc5 [˙A / x]˙ y y = B φ x x = A y y = B φ
10 sbc5 [˙B / y]˙ x x = A φ y y = B x x = A φ
11 8 9 10 3bitr4i [˙A / x]˙ y y = B φ [˙B / y]˙ x x = A φ
12 sbc5 [˙B / y]˙ φ y y = B φ
13 12 sbcbii [˙A / x]˙ [˙B / y]˙ φ [˙A / x]˙ y y = B φ
14 sbc5 [˙A / x]˙ φ x x = A φ
15 14 sbcbii [˙B / y]˙ [˙A / x]˙ φ [˙B / y]˙ x x = A φ
16 11 13 15 3bitr4i [˙A / x]˙ [˙B / y]˙ φ [˙B / y]˙ [˙A / x]˙ φ