Metamath Proof Explorer


Theorem sbccsb

Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbccsb [˙A / x]˙ φ y A / x y | φ

Proof

Step Hyp Ref Expression
1 abid y y | φ φ
2 1 sbcbii [˙A / x]˙ y y | φ [˙A / x]˙ φ
3 sbcel2 [˙A / x]˙ y y | φ y A / x y | φ
4 2 3 bitr3i [˙A / x]˙ φ y A / x y | φ