Metamath Proof Explorer


Theorem sbcel1g

Description: Move proper substitution in and out of a membership relation. Note that the scope of [. A / x ]. is the wff B e. C , whereas the scope of [_ A / x ]_ is the class B . (Contributed by NM, 10-Nov-2005)

Ref Expression
Assertion sbcel1g A V [˙A / x]˙ B C A / x B C

Proof

Step Hyp Ref Expression
1 sbcel12 [˙A / x]˙ B C A / x B A / x C
2 csbconstg A V A / x C = C
3 2 eleq2d A V A / x B A / x C A / x B C
4 1 3 syl5bb A V [˙A / x]˙ B C A / x B C