Metamath Proof Explorer


Theorem sbcel1v

Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018) Avoid ax-13 . (Revised by Wolf Lammen, 30-Apr-2023)

Ref Expression
Assertion sbcel1v [˙A / x]˙ x B A B

Proof

Step Hyp Ref Expression
1 sbcex [˙A / x]˙ x B A V
2 elex A B A V
3 dfsbcq2 y = A y x x B [˙A / x]˙ x B
4 eleq1 y = A y B A B
5 clelsb1 y x x B y B
6 3 4 5 vtoclbg A V [˙A / x]˙ x B A B
7 1 2 6 pm5.21nii [˙A / x]˙ x B A B