Metamath Proof Explorer


Theorem sbcel21v

Description: Class substitution into a membership relation. One direction of sbcel2gv that holds for proper classes. (Contributed by NM, 17-Aug-2018)

Ref Expression
Assertion sbcel21v [˙B / x]˙ A x A B

Proof

Step Hyp Ref Expression
1 sbcex [˙B / x]˙ A x B V
2 sbcel2gv B V [˙B / x]˙ A x A B
3 2 biimpd B V [˙B / x]˙ A x A B
4 1 3 mpcom [˙B / x]˙ A x A B