Metamath Proof Explorer


Theorem sbceq1dd

Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017) (Revised by NM, 30-Jun-2018)

Ref Expression
Hypotheses sbceq1d.1 φ A = B
sbceq1dd.2 φ [˙A / x]˙ ψ
Assertion sbceq1dd φ [˙B / x]˙ ψ

Proof

Step Hyp Ref Expression
1 sbceq1d.1 φ A = B
2 sbceq1dd.2 φ [˙A / x]˙ ψ
3 1 sbceq1d φ [˙A / x]˙ ψ [˙B / x]˙ ψ
4 2 3 mpbid φ [˙B / x]˙ ψ