Metamath Proof Explorer


Theorem sbceq1g

Description: Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005)

Ref Expression
Assertion sbceq1g A V [˙A / x]˙ B = C A / x B = C

Proof

Step Hyp Ref Expression
1 sbceqg A V [˙A / x]˙ B = C A / x B = A / x C
2 csbconstg A V A / x C = C
3 2 eqeq2d A V A / x B = A / x C A / x B = C
4 1 3 bitrd A V [˙A / x]˙ B = C A / x B = C