Metamath Proof Explorer


Theorem sbceq2g

Description: Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005)

Ref Expression
Assertion sbceq2g A V [˙A / x]˙ B = C B = A / x C

Proof

Step Hyp Ref Expression
1 sbceqg A V [˙A / x]˙ B = C A / x B = A / x C
2 csbconstg A V A / x B = B
3 2 eqeq1d A V A / x B = A / x C B = A / x C
4 1 3 bitrd A V [˙A / x]˙ B = C B = A / x C