Description: Class version of one implication of equvelv . (Contributed by Andrew Salmon, 28-Jun-2011) (Proof shortened by SN, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbceqal |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | ||
| 2 | eqeq1 | ||
| 3 | 1 2 | imbi12d | |
| 4 | eqid | ||
| 5 | 4 | a1bi | |
| 6 | 3 5 | bitr4di | |
| 7 | 6 | spcgv |