Metamath Proof Explorer


Theorem sbcgf

Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Hypothesis sbcgf.1 x φ
Assertion sbcgf A V [˙A / x]˙ φ φ

Proof

Step Hyp Ref Expression
1 sbcgf.1 x φ
2 sbctt A V x φ [˙A / x]˙ φ φ
3 1 2 mpan2 A V [˙A / x]˙ φ φ