Metamath Proof Explorer


Theorem sbcie2g

Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie avoids a disjointness condition on x , A by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses sbcie2g.1 x = y φ ψ
sbcie2g.2 y = A ψ χ
Assertion sbcie2g A V [˙A / x]˙ φ χ

Proof

Step Hyp Ref Expression
1 sbcie2g.1 x = y φ ψ
2 sbcie2g.2 y = A ψ χ
3 dfsbcq y = A [˙y / x]˙ φ [˙A / x]˙ φ
4 sbsbc y x φ [˙y / x]˙ φ
5 1 sbievw y x φ ψ
6 4 5 bitr3i [˙y / x]˙ φ ψ
7 3 2 6 vtoclbg A V [˙A / x]˙ φ χ