Metamath Proof Explorer


Theorem sbcie2s

Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Hypotheses sbcie2s.a A = E W
sbcie2s.b B = F W
sbcie2s.1 a = A b = B φ ψ
Assertion sbcie2s w = W [˙ E w / a]˙ [˙ F w / b]˙ ψ φ

Proof

Step Hyp Ref Expression
1 sbcie2s.a A = E W
2 sbcie2s.b B = F W
3 sbcie2s.1 a = A b = B φ ψ
4 fvex E w V
5 fvex F w V
6 simprl w = W a = E w b = F w a = E w
7 fveq2 w = W E w = E W
8 7 1 eqtr4di w = W E w = A
9 8 adantr w = W a = E w b = F w E w = A
10 6 9 eqtrd w = W a = E w b = F w a = A
11 simprr w = W a = E w b = F w b = F w
12 fveq2 w = W F w = F W
13 12 2 eqtr4di w = W F w = B
14 13 adantr w = W a = E w b = F w F w = B
15 11 14 eqtrd w = W a = E w b = F w b = B
16 10 15 3 syl2anc w = W a = E w b = F w φ ψ
17 16 bicomd w = W a = E w b = F w ψ φ
18 17 ex w = W a = E w b = F w ψ φ
19 4 5 18 sbc2iedv w = W [˙ E w / a]˙ [˙ F w / b]˙ ψ φ