Metamath Proof Explorer


Theorem sbcie3s

Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses sbcie3s.a A = E W
sbcie3s.b B = F W
sbcie3s.c C = G W
sbcie3s.1 a = A b = B c = C φ ψ
Assertion sbcie3s w = W [˙ E w / a]˙ [˙ F w / b]˙ [˙ G w / c]˙ ψ φ

Proof

Step Hyp Ref Expression
1 sbcie3s.a A = E W
2 sbcie3s.b B = F W
3 sbcie3s.c C = G W
4 sbcie3s.1 a = A b = B c = C φ ψ
5 fvexd w = W E w V
6 fvexd w = W a = E w F w V
7 fvexd w = W a = E w b = F w G w V
8 simpllr w = W a = E w b = F w c = G w a = E w
9 fveq2 w = W E w = E W
10 9 ad3antrrr w = W a = E w b = F w c = G w E w = E W
11 8 10 eqtrd w = W a = E w b = F w c = G w a = E W
12 11 1 eqtr4di w = W a = E w b = F w c = G w a = A
13 simplr w = W a = E w b = F w c = G w b = F w
14 fveq2 w = W F w = F W
15 14 ad3antrrr w = W a = E w b = F w c = G w F w = F W
16 13 15 eqtrd w = W a = E w b = F w c = G w b = F W
17 16 2 eqtr4di w = W a = E w b = F w c = G w b = B
18 simpr w = W a = E w b = F w c = G w c = G w
19 fveq2 w = W G w = G W
20 19 ad3antrrr w = W a = E w b = F w c = G w G w = G W
21 18 20 eqtrd w = W a = E w b = F w c = G w c = G W
22 21 3 eqtr4di w = W a = E w b = F w c = G w c = C
23 12 17 22 4 syl3anc w = W a = E w b = F w c = G w φ ψ
24 23 bicomd w = W a = E w b = F w c = G w ψ φ
25 7 24 sbcied w = W a = E w b = F w [˙ G w / c]˙ ψ φ
26 6 25 sbcied w = W a = E w [˙ F w / b]˙ [˙ G w / c]˙ ψ φ
27 5 26 sbcied w = W [˙ E w / a]˙ [˙ F w / b]˙ [˙ G w / c]˙ ψ φ