Metamath Proof Explorer


Theorem sbcied2

Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014)

Ref Expression
Hypotheses sbcied2.1 φ A V
sbcied2.2 φ A = B
sbcied2.3 φ x = B ψ χ
Assertion sbcied2 φ [˙A / x]˙ ψ χ

Proof

Step Hyp Ref Expression
1 sbcied2.1 φ A V
2 sbcied2.2 φ A = B
3 sbcied2.3 φ x = B ψ χ
4 id x = A x = A
5 4 2 sylan9eqr φ x = A x = B
6 5 3 syldan φ x = A ψ χ
7 1 6 sbcied φ [˙A / x]˙ ψ χ