Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
sbciedOLD
Metamath Proof Explorer
Description: Obsolete version of sbcied as of 12-Oct-2024. (Contributed by NM , 13-Dec-2014) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
sbciedOLD.1
⊢ φ → A ∈ V
sbciedOLD.2
⊢ φ ∧ x = A → ψ ↔ χ
Assertion
sbciedOLD
⊢ φ → [ ˙ A / x ] ˙ ψ ↔ χ
Proof
Step
Hyp
Ref
Expression
1
sbciedOLD.1
⊢ φ → A ∈ V
2
sbciedOLD.2
⊢ φ ∧ x = A → ψ ↔ χ
3
nfv
⊢ Ⅎ x φ
4
nfvd
⊢ φ → Ⅎ x χ
5
1 2 3 4
sbciedf
⊢ φ → [ ˙ A / x ] ˙ ψ ↔ χ