Metamath Proof Explorer


Theorem sbciedOLD

Description: Obsolete version of sbcied as of 12-Oct-2024. (Contributed by NM, 13-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses sbciedOLD.1 φ A V
sbciedOLD.2 φ x = A ψ χ
Assertion sbciedOLD φ [˙A / x]˙ ψ χ

Proof

Step Hyp Ref Expression
1 sbciedOLD.1 φ A V
2 sbciedOLD.2 φ x = A ψ χ
3 nfv x φ
4 nfvd φ x χ
5 1 2 3 4 sbciedf φ [˙A / x]˙ ψ χ