Metamath Proof Explorer


Theorem sbciedf

Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014)

Ref Expression
Hypotheses sbcied.1 φ A V
sbcied.2 φ x = A ψ χ
sbciedf.3 x φ
sbciedf.4 φ x χ
Assertion sbciedf φ [˙A / x]˙ ψ χ

Proof

Step Hyp Ref Expression
1 sbcied.1 φ A V
2 sbcied.2 φ x = A ψ χ
3 sbciedf.3 x φ
4 sbciedf.4 φ x χ
5 2 ex φ x = A ψ χ
6 3 5 alrimi φ x x = A ψ χ
7 sbciegft A V x χ x x = A ψ χ [˙A / x]˙ ψ χ
8 1 4 6 7 syl3anc φ [˙A / x]˙ ψ χ