Metamath Proof Explorer


Theorem sbciegOLD

Description: Obsolete version of sbcieg as of 12-Oct-2024. (Contributed by NM, 10-Nov-2005) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis sbciegOLD.1 x = A φ ψ
Assertion sbciegOLD A V [˙A / x]˙ φ ψ

Proof

Step Hyp Ref Expression
1 sbciegOLD.1 x = A φ ψ
2 nfv x ψ
3 2 1 sbciegf A V [˙A / x]˙ φ ψ