Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
sbciegf
Metamath Proof Explorer
Description: Conversion of implicit substitution to explicit class substitution.
(Contributed by NM , 14-Dec-2005) (Revised by Mario Carneiro , 13-Oct-2016)
Ref
Expression
Hypotheses
sbciegf.1
⊢ Ⅎ x ψ
sbciegf.2
⊢ x = A → φ ↔ ψ
Assertion
sbciegf
⊢ A ∈ V → [ ˙ A / x ] ˙ φ ↔ ψ
Proof
Step
Hyp
Ref
Expression
1
sbciegf.1
⊢ Ⅎ x ψ
2
sbciegf.2
⊢ x = A → φ ↔ ψ
3
2
ax-gen
⊢ ∀ x x = A → φ ↔ ψ
4
sbciegft
⊢ A ∈ V ∧ Ⅎ x ψ ∧ ∀ x x = A → φ ↔ ψ → [ ˙ A / x ] ˙ φ ↔ ψ
5
1 3 4
mp3an23
⊢ A ∈ V → [ ˙ A / x ] ˙ φ ↔ ψ