Metamath Proof Explorer


Theorem sbciegf

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses sbciegf.1 x ψ
sbciegf.2 x = A φ ψ
Assertion sbciegf A V [˙A / x]˙ φ ψ

Proof

Step Hyp Ref Expression
1 sbciegf.1 x ψ
2 sbciegf.2 x = A φ ψ
3 2 ax-gen x x = A φ ψ
4 sbciegft A V x ψ x x = A φ ψ [˙A / x]˙ φ ψ
5 1 3 4 mp3an23 A V [˙A / x]˙ φ ψ