Metamath Proof Explorer


Theorem sbcim1OLD

Description: Obsolete version of sbcim1 as of 26-Oct-2024. (Contributed by NM, 17-Aug-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sbcim1OLD [˙A / x]˙ φ ψ [˙A / x]˙ φ [˙A / x]˙ ψ

Proof

Step Hyp Ref Expression
1 sbcex [˙A / x]˙ φ ψ A V
2 sbcimg A V [˙A / x]˙ φ ψ [˙A / x]˙ φ [˙A / x]˙ ψ
3 2 biimpd A V [˙A / x]˙ φ ψ [˙A / x]˙ φ [˙A / x]˙ ψ
4 1 3 mpcom [˙A / x]˙ φ ψ [˙A / x]˙ φ [˙A / x]˙ ψ