Metamath Proof Explorer


Theorem sbcim2g

Description: Distribution of class substitution over a left-nested implication. Similar to sbcimg . sbcim2g is sbcim2gVD without virtual deductions and was automatically derived from sbcim2gVD using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sbcim2g A V [˙A / x]˙ φ ψ χ [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ

Proof

Step Hyp Ref Expression
1 sbcimg A V [˙A / x]˙ φ ψ χ [˙A / x]˙ φ [˙A / x]˙ ψ χ
2 1 biimpd A V [˙A / x]˙ φ ψ χ [˙A / x]˙ φ [˙A / x]˙ ψ χ
3 sbcimg A V [˙A / x]˙ ψ χ [˙A / x]˙ ψ [˙A / x]˙ χ
4 imbi2 [˙A / x]˙ ψ χ [˙A / x]˙ ψ [˙A / x]˙ χ [˙A / x]˙ φ [˙A / x]˙ ψ χ [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ
5 4 biimpcd [˙A / x]˙ φ [˙A / x]˙ ψ χ [˙A / x]˙ ψ χ [˙A / x]˙ ψ [˙A / x]˙ χ [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ
6 2 3 5 syl6ci A V [˙A / x]˙ φ ψ χ [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ
7 idd A V [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ
8 biimpr [˙A / x]˙ ψ χ [˙A / x]˙ ψ [˙A / x]˙ χ [˙A / x]˙ ψ [˙A / x]˙ χ [˙A / x]˙ ψ χ
9 3 7 8 ee13 A V [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ [˙A / x]˙ φ [˙A / x]˙ ψ χ
10 9 1 sylibrd A V [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ [˙A / x]˙ φ ψ χ
11 6 10 impbid A V [˙A / x]˙ φ ψ χ [˙A / x]˙ φ [˙A / x]˙ ψ [˙A / x]˙ χ