Metamath Proof Explorer


Theorem sbcimdvOLD

Description: Obsolete version of sbcimdv as of 12-Oct-2024. (Contributed by NM, 11-Nov-2005) (Revised by NM, 17-Aug-2018) (Proof shortened by JJ, 7-Jul-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis sbcimdvOLD.1 φ ψ χ
Assertion sbcimdvOLD φ [˙A / x]˙ ψ [˙A / x]˙ χ

Proof

Step Hyp Ref Expression
1 sbcimdvOLD.1 φ ψ χ
2 sbcex [˙A / x]˙ ψ A V
3 1 alrimiv φ x ψ χ
4 spsbc A V x ψ χ [˙A / x]˙ ψ χ
5 sbcim1 [˙A / x]˙ ψ χ [˙A / x]˙ ψ [˙A / x]˙ χ
6 3 4 5 syl56 A V φ [˙A / x]˙ ψ [˙A / x]˙ χ
7 6 com3l φ [˙A / x]˙ ψ A V [˙A / x]˙ χ
8 2 7 mpdi φ [˙A / x]˙ ψ [˙A / x]˙ χ