Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
sbcimg
Next ⟩
sbcan
Metamath Proof Explorer
Ascii
Unicode
Theorem
sbcimg
Description:
Distribution of class substitution over implication.
(Contributed by
NM
, 16-Jan-2004)
Ref
Expression
Assertion
sbcimg
⊢
A
∈
V
→
[
˙
A
/
x
]
˙
φ
→
ψ
↔
[
˙
A
/
x
]
˙
φ
→
[
˙
A
/
x
]
˙
ψ
Proof
Step
Hyp
Ref
Expression
1
dfsbcq2
⊢
y
=
A
→
y
x
φ
→
ψ
↔
[
˙
A
/
x
]
˙
φ
→
ψ
2
dfsbcq2
⊢
y
=
A
→
y
x
φ
↔
[
˙
A
/
x
]
˙
φ
3
dfsbcq2
⊢
y
=
A
→
y
x
ψ
↔
[
˙
A
/
x
]
˙
ψ
4
2
3
imbi12d
⊢
y
=
A
→
y
x
φ
→
y
x
ψ
↔
[
˙
A
/
x
]
˙
φ
→
[
˙
A
/
x
]
˙
ψ
5
sbim
⊢
y
x
φ
→
ψ
↔
y
x
φ
→
y
x
ψ
6
1
4
5
vtoclbg
⊢
A
∈
V
→
[
˙
A
/
x
]
˙
φ
→
ψ
↔
[
˙
A
/
x
]
˙
φ
→
[
˙
A
/
x
]
˙
ψ